![]() High current protection circuit for telephone interface
专利摘要:
A telephone test set is protected from an excessive current condition by a protection circuit that maintains sufficient loop current flow for continuous operation of the telephone equipment's functional circuitry, while by-passing and/or reducing excess current that could potentially damage the protected circuitry. A series current-limiting element is installed in the loop current path between a tip and ring interface and the circuitry of the telephone test set. A current shunting circuit is installed across the tip-ring ports of the protected circuit downstream of the current-limiting element. A current sense circuit monitors the loop current and controls the operation of the shunting circuit in accordance with the magnitude of the loop current. If a substantial overcurrent condition persists for an extended period of time, the resulting power dissipation associated with the high current flow will cause the current limiting element to change to a high impedance state. Once the overcurrent condition terminates, the series element will revert to its low impedance state. 公开号:US20010001619A1 申请号:US09/753,097 申请日:2001-01-02 公开日:2001-05-24 发明作者:Wayne Wong;Saul Rodriguez 申请人:Harris Corp; IPC主号:H04M1-745
专利说明:
[0001] The present invention relates in general to communication systems, and is particularly directed to a circuit for protecting the electronic circuitry of telephone equipment, such as but not limited to a telephone test set, from an excessive current condition such as may occur, if the telephone ring and tip leads become directly coupled to a low impedance path to a high voltage source, such as battery or loop feed circuit. [0001] BACKGROUND OF THE INVENTION [0002] The fact that manufacturers of telephone equipment provide instruction manuals and guidelines for use and maintenance of their equipment is no guarantee that users will not subject such equipment to potentially damaging operational and/or environmental conditions. Indeed, it is often the case that telephone repair technicians connect their portable test set equipment to very high voltage and current sources, such as power supplies or telephone loop feed circuits having very low series resistances and/or high voltages. When this happens, loop currents considerably in excess of the rated value (e.g., on the order of 100 - 150 ma) may result. Prolonged operation of the equipment in such a high current condition will eventually lead to failure of the equipment's electronic circuitry. [0002] [0003] One proposal to deal with the high current condition has been to switchably interrupt or insert a high impedance device in the loop current path to the protected circuitry. While this overcurrent intervention approach prevents damage to the circuit to be protected, it also effectively renders the telephone equipment inoperative until the high current condition has terminated. [0003] SUMMARY OF THE INVENTION [0004] Rather than effectively shutting down the telephone equipment until the overcurrent condition subsides, the invention employs selectively controlled high current protection circuit that is effective to maintain sufficient current flow for continuous operation of the telephone equipment's functional circuitry, while at the same time controllably by-passing excess and/or reducing the amount of loop current being drawn into the equipment, that could potentially damage the protected circuitry. [0004] [0005] For this purpose, the over current protection circuit of the invention comprises a series current-limiting element installed in the loop current flow path between a tip and ring interface (bridge rectifier) and the circuitry of the telephone equipment to be protected. An overcurrent current shunting or by-pass circuit is installed across the tip-ring ports of the protected circuit downstream of the current-limiting element. This overcurrent by-pass circuit may include the collector-emitter path of a bipolar transistor, the base of which is coupled through a level-shifting and amplifier transistor to a current sense circuit. [0005] [0006] The current sense circuit may include a current sensing bipolar transistor, which is controllably turned on by the voltage across a relatively low value current sense resistor installed in the loop current path through the telephone's electronic circuitry to be protected. By relatively low value resistance is meant one that does not affect the operational performance of the circuitry to be protected. [0006] [0007] During normal operation, the current flow through the current sense resistor will be less than that sufficient to forward bias the current sense transistor, so that the shunting circuitry is turned off, and all of the loop current flows through the tip-ring path, including the series current-limiting element, the protected circuitry and the current sense resistor. If the tip-ring terminals of the telephone (test) set are coupled to a high current source, such as being placed directly across the terminals of battery, then the current flow through the current sense resistor will increase to a value sufficient to turn on the current sense transistor. This, in turn will cause the overcurrent by-pass transistor to divert or by-pass a portion of the current that would otherwise flow through the electronic circuitry by way of the tip-ring loop current path. [0007] [0008] For a medium magnitude overcurrent condition (e.g., on the order of 100 - 150 ma), this by-pass operation is sufficient to allow useful loop current (e.g., on the order of 20 - 100 ma) to flow through the protected circuitry, while allowing the excess current to be diverted without damaging the current-shunting components. However, if a substantial overcurrent condition persists for an extended period of time, the resulting power dissipation associated with this high current flow will cause the series high impedance element to change from its low impedance state to its high impedance state. In this high impedance state, sufficient operational loop current (e.g., 20 - 30 ma) will continue to flow through the protected circuitry, yet the components of the shunting circuitry will be protected. Once the overcurrent condition terminates, the series element will revert to its low impedance state. [0008] BRIEF DESCRIPTION OF THE DRAWINGS [0009] FIG. 1 is a functional block diagram of a high current protection circuit in accordance with the present invention; and [0009] [0010] FIG. 2 is a schematic diagram of the high current protection circuit of FIG. 1. [0010] DETAILED DESCRIPTION [0011] Before describing in detail the new and improved high current protection circuit in accordance with the present invention, it should be observed that the invention resides primarily in what is effectively a prescribed combination of conventional communication circuit components, that are readily interfaced with the communication conductors of conventional telecommunication equipment, such as but not limited to a craftsperson's telephone test set. Consequently, the configuration of such circuits and components, and the manner in which they are interfaced with other communication system equipment have, for the most part, been illustrated in the drawings by a readily understandable functional block diagram and associated schematic. These diagrams show only those specific details that are pertinent to the present invention, so as not to obscure the disclosure with details which will be readily apparent to those skilled in the art having the benefit of the description herein. Thus, the block diagram and associated schematic illustrations are primarily intended to show the major components of the protection circuit in a convenient functional grouping, whereby the present invention may be more readily understood. [0011] [0012] As pointed out briefly above, rather than shutting down the protected telephone circuitry until the overcurrent condition subsides, the present invention employs a selectively controlled high current protection circuit that is effective to provide sufficient current flow for maintaining operation of the telephone equipment's functional circuitry, while controllably by-passing excess and/or reducing the amount of loop current being drawn into the equipment, that could potentially damage the protected circuitry. [0012] [0013] For this purpose, as diagrammatically illustrated in FIG. 1, the over current protection circuit of the invention, shown in dotted lines [0013] 10, comprises a series current-limiting element 13 installed in the loop current flow path 11-12 between a tip and ring interface (bridge rectifier) 15 and circuitry 20 of the telephone equipment to be protected. An overcurrent current shunting or by-pass circuit 30 is installed across the tip-ring ports 21 - 22 of the protected circuit 20 downstream of the current-limiting element 13. As will be described below with reference to FIG. 2, the overcurrent by-pass circuit 30 may include the collector-emitter path of a bipolar transistor, coupled through a level-shifting and amplifier transistor to a current sense circuit 40. [0014] The current sense circuit [0014] 40 is coupled in the loop current path and is operative to monitor the magnitude of the loop current flowing therethrough. During normal current operation, wherein the loop current is less than a prescribed threshold (e.g., on the order of one hundred milliamps), the output of the current sense circuit 40 will maintain the overcurrent by-pass circuit 30 in a non-shunting state. However, in the event of an overcurrent condition, such as would occur if the tip-ring terminals of the telephone equipment were directly coupled to a high current source, such as being placed directly across the terminals of power supply (battery), the current sense circuit 40 will detect the increased current flow and trigger the overcurrent-shunting operation of the overcurrent by-pass circuit 30. For a medium magnitude overcurrent condition (e.g., 100 - 150 ma), loop current in excess of that necessary to provide useful loop current (e.g., on the order of 20 - 100 ma) to the telephone circuitry is shunted through by-pass circuit 30, while still allowing useful current to be supplied to and operate the telephone circuitry 20. [0015] If the overcurrent condition is substantial, however, the resulting power dissipation associated with this high current flow will cause the series current-limiting element [0015] 13 to change from its low impedance state to a high impedance state, thereby substantially reducing the magnitude of the loop current (e.g., to a value flow on the order of 20 - 30 ma). During this high impedance state, this small but sufficient operational loop current will continue to flow through the circuitry 20, so that the telephone circuitry remains operational. In response to termination of the overcurrent condition, the series element will revert to its low impedance state. [0016] Referring now to FIG. 2, a non-limiting example of a circuit schematic for implementing the functional block diagram of FIG. 1 is shown as comprising a resettable fuse element [0016] 101 (such as a standard conductive polymer-based power dissipation device) as the current-limiting series element 13 installed in the tip path 11 between the tip and ring interface (bridge rectifier) 15 and the first end 21 of the telephone circuitry 20 to be protected. The current shunt circuit 30 is shown as including an overcurrent by-pass or shunting NPN bipolar transistor 110 having its collector-emitter path 112-113 coupled in circuit between the fuse element 101 and the ring path 12. [0017] The base [0017] 111 of overcurrent by-pass transistor 110 is coupled to a common node connection 121 of a pair of resistors 123 and 125, which are coupled in series with the collector-emitter path 132-133 of a level shifting and amplifier PNP bipolar transistor 130, between the tip path-installed fuse element 101 and the ring path 12. The base 131 of PNP bipolar transistor 130 is coupled to a common connection 141 of a pair of resistors 143 and 145. [0018] Resistors [0018] 143 and 145 are coupled in series with the current sense circuit 40, which includes the collector-emitter path 152-153 of a current sensing NPN bipolar transistor 150, coupled between the tip path 11 and the ring path 12. The base 151 of current sense transistor 150 is coupled to a first end 161 of a current sense resistor 160, a second end 163 of which is coupled to the emitter 153 of current sense transistor 150. The current sense resistor 160, which is coupled in the loop current path between the ring lead 12 and a second end 21 of the telephone's electronic circuitry 20 to be protected, has a relatively low resistance (e.g., on the order of four to six ohms) so that it does not affect the operational performance of the circuitry 20. [0019] During normal (non-overcurrent) operation, the current flow through current sense resistor [0019] 160 will be less than that sufficient to forward bias the base-emitter junction of current sense transistor 150, so that each of transistors 110, 130 and 150 is turned off, and all of the loop current flows through the tip-ring path, including the tip path-installed fuse element 101, the circuitry 20 and the current sense resistor 160. (As noted above, the magnitude of the current sense resistor 160 is sufficiently low that it does not affect the operational performance of the circuitry 20.) [0020] If the tip-ring terminals of the telephone (test) set are coupled to a high current source, such as being placed directly across the terminals of battery as a non-limiting example, then the current flow through the current sense resistor [0020] 160 will increase to a value sufficient to forward bias the base-emitter junction of and turn on the current sense transistor 150. The resulting current flow through resistors 143 and 145 and the collector-emitter path 152-153 of current sense transistor 150 will forward bias the base-emitter junction of level shift transistor 130, which turns on transistor 130 and causes current flow through resistors 123 and 125. This in turn forward biases the overcurrent by-pass transistor 110, causing its collector-emitter path 112-113 to divert a portion of the current that would otherwise flow through the electronic circuitry 20 by way of the tip-ring loop current path. [0021] For a medium magnitude overcurrent condition (e.g., on the order of 100 - 150 ma), the above-described operation is sufficient to allow useful loop current (e.g., on the order of 20 - 100 ma) to flow through the circuitry [0021] 20, on the one hand, while allowing excessive current to be diverted without damaging the diverting or shunting components. However, if the overcurrent condition is substantial (e.g., it exceeds a few hundred milliamps for an extended period of time), then the resulting power dissipation associated with this high current flow will cause the resettable fuse element 101 to change from its low impedance state to a high impedance state. During this high impedance state of the current-limiting element 101, sufficient operational loop current (e.g., 20 - 30 ma) will continue to flow through the circuitry 20; however, the components of the shunting circuitry 30 will be protected. Once the overcurrent condition terminates, the series element 101 will revert to its low impedance state, as described above. [0022] In this state, the telephone circuitry and the protection circuit of the invention appear as a continuous load on the telephone line, as seen from upstream central office switching equipment. Since (a small amount of) loop current continues to flow, the central office equipment does not detect that the telephone circuit has gone on-hook and drop the call. The invention also accommodates the situation where the user attempts to go off-hook during a ringing signal, which may have peaks on the order of well in excess of 100 volts. In a conventional protection circuit, transitioning to its high impedance protection state may prevent the ring-trip circuit at the central office from responding, so that the ringing signal does not immediately terminate, as the normally low off-hook termination resistance will not be sensed. This constitutes an annoyance to the user, who is not accustomed to the phone ringing when it is off-hook. [0022] [0023] Thus, rather than switchably interrupt or insert a high impedance device in the loop current path to the circuitry to be protected, as in the prior art, which effectively renders the telephone equipment inoperative until the high current condition has terminated, the overcurrent protection mechanism of the invention maintains sufficient current flow for continuous operation of the telephone equipment's functional circuitry, while at the same time controllably by-passing excess and/or reducing the amount of loop current being drawn into the equipment, that could potentially damage the protected circuitry. [0023] [0024] While I have shown and described an embodiment in accordance with the present invention, it is to be understood that the same is not limited thereto but is susceptible to numerous changes and modifications as known to a person skilled in the art, and I therefore do not wish to be limited to the details shown and described herein, but intend to cover all such changes and modifications as are obvious to one of ordinary skill in the art. [0024]
权利要求:
Claims (16) [1" id="US-20010001619-A1-CLM-00001] 1. A protection circuit comprising: input terminals arranged to be coupled to a source of electrical energy; output terminals arranged to be coupled to an output circuit to be protected; a variable impedance device coupled in a current flow path of said output circuit between said input and output terminals; an overcurrent by-pass circuit coupled to divert current from said current flow path; and a current flow sense circuit coupled to monitor current flow through said current flow path and being operative, in response to an overcurrent condition, to cause said overcurrent by-pass circuit to controllably divert a portion of current away from said current flow path through said output circuit, while allowing current sufficient to operate said output circuit to continue to flow through said current flow path and said output circuit. [2" id="US-20010001619-A1-CLM-00002] 2. A protection circuit according to claim 1 , wherein said variable impedance device is operative, in response to said overcurrent condition reaching a prescribed level, to change from a low impedance state to a high impedance state, thereby reducing current flow therethrough to a value sufficient to continue to operate said output circuit, but less than a value that could damage said overcurrent by-pass circuit. [3" id="US-20010001619-A1-CLM-00003] 3. A protection circuit according to claim 2 , wherein said variable impedance device is operative, in response to said overcurrent condition dropping below said prescribed level, to change from said high impedance state to said low impedance state. [4" id="US-20010001619-A1-CLM-00004] 4. A protection circuit according to claim 1 , wherein said output circuit comprises a telephone circuit and said input terminals are arranged to be coupled with tip and ring conductors of a telephone line. [5" id="US-20010001619-A1-CLM-00005] 5. A protection circuit according to claim 4 , wherein said variable impedance device comprises a series current-limiting element installed in a loop current flow path between a tip and ring interface and circuitry of telephone equipment to be protected. [6" id="US-20010001619-A1-CLM-00006] 6. A protection circuit according to claim 5 , wherein said overcurrent by-pass circuit is installed across tip-ring ports of said circuitry of telephone equipment to be protected downstream of said series current-limiting element. [7" id="US-20010001619-A1-CLM-00007] 7. A protection circuit according to claim 1 , wherein said overcurrent by-pass circuit includes a current input-output path of a controlled switching device, which is controlled by said current flow sense circuit. [8" id="US-20010001619-A1-CLM-00008] 8. A protection circuit according to claim 1 , wherein said current flow sense circuit includes a current sensing resistor installed in said current flow path, and a threshold circuit which is coupled to monitor voltage across said current sensing resistor and to control the operation of said current flow sense circuit. [9" id="US-20010001619-A1-CLM-00009] 9. A protection circuit according to claim 8 , wherein said overcurrent by-pass circuit includes a current input-output path of a controlled switching device, which is controlled by said threshold circuit. [10" id="US-20010001619-A1-CLM-00010] 10. A method of protecting a signaling circuit from an overcurrent condition in a current supply path for said signaling circuit, while allowing said signaling circuit to continue to operate in the presence of said overcurrent condition comprising the steps of: (a) monitoring current flow through said current supply path; (b) in response to said overcurrent condition in said current supply path, diverting a portion of current away from said current supply path, while causing current sufficient to operate said signaling circuit to continue to flow through said current supply path and said signaling circuit. [11" id="US-20010001619-A1-CLM-00011] 11. A method according to claim 10 , wherein said signaling circuit comprises a telephone circuit and wherein said current supply path is coupled with tip and ring conductors of a telephone line. [12" id="US-20010001619-A1-CLM-00012] 12. A method according to claim 10 , further including the step of: (c) in response to said overcurrent condition reaching a prescribed level, placing a high impedance device in said current supply path, thereby reducing current flow therethrough to a value sufficient to continue to operate said signaling circuit. [13" id="US-20010001619-A1-CLM-00013] 13. A method according to claim 10 , wherein step (b) includes diverting said portion of current through a current shunting circuit that by-passes said signaling circuit. [14" id="US-20010001619-A1-CLM-00014] 14. A method according to claim 13 , wherein step (c) comprises installing a variable impedance device in said current supply path and, in response to said overcurrent condition reaching a prescribed level, placing said variable impedance device in a high impedance state, thereby reducing current flow therethrough to a value sufficient to continue to operate said signaling circuit, but less than a value that could damage said current shunting circuit. [15" id="US-20010001619-A1-CLM-00015] 15. A method according to claim 14 , wherein said variable impedance device comprises a series current-limiting element installed in a loop current flow path between a telephone tip and ring interface and said signaling circuit. [16" id="US-20010001619-A1-CLM-00016] 16. A method according to claim 14 , further including the step of: (d) in response to said overcurrent condition dropping below said prescribed level, placing said variable impedance device in a low impedance state.
类似技术:
公开号 | 公开日 | 专利标题 US5539820A|1996-07-23|Protection of active telephone line interface circuits US6418222B2|2002-07-09|High current protection circuit for telephone interface KR960014224B1|1996-10-14|Protection arrangement for a telephone subscriber line interface circuit EP0139103A2|1985-05-02|Overvoltage protection circuit for slic US4398066A|1983-08-09|Automatic power denial circuit for a subscriber line interface circuit US6172864B1|2001-01-09|Protection against overvoltages of an interface of telephone lines US20050089157A1|2005-04-28|Telephone terminal equipment interface circuit US5208718A|1993-05-04|Protection circuit EP0232317B1|1990-12-27|Apparatus for providing a ground reference for telephone customer special circuits powered from a floating battery feed GB2263211A|1993-07-14|Termination unit with maintenance facility US6069950A|2000-05-30|Dual-limit current-limiting battery-feed circuit for a digital line EP1410611A1|2004-04-21|Resetting surge protection in telephone line interface circuits US6922323B1|2005-07-26|Protection circuitry for a subscriber line interface circuit | arrangement JP2004523151A|2004-07-29|Overvoltage protection circuit EP0177219B1|1991-01-09|Origination scan circuit JP2011055493A|2011-03-17|Overvoltage protection with power sink JPH08140273A|1996-05-31|Load short-circuit protective circuit CA1223992A|1987-07-07|Transient resistant key operated pulse generatingcalling device circuit JP5220819B2|2013-06-26|Method and apparatus for controlling shared positive protection US7103178B2|2006-09-05|Speech amplifier-resident mechanism for controllably supplying power to a line circuit US8437111B1|2013-05-07|Systems and methods for current limiting with overload protection WO1998038786A1|1998-09-03|An adaptable impedance device for controlling direct current flow in a modem KR900007843Y1|1990-08-24|Circuit to prevent over voltage in communicatious KR20090061759A|2009-06-17|Device for preventing over-current in subscriber board NZ231601A|1992-02-25|Lineswitch overvoltage protection
同族专利:
公开号 | 公开日 CN1236211A|1999-11-24| GB2336046A|1999-10-06| GB9906998D0|1999-05-19| FR2777134B1|2004-12-03| US6418222B2|2002-07-09| TW401672B|2000-08-11| GB2336046B|2002-04-17| BR9901587A|2000-06-06| CA2266322C|2011-10-25| CA2266322A1|1999-10-03| FR2777134A1|1999-10-08|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US6760437B1|1998-05-06|2004-07-06|Hewlett-Packard Development Company, L.P.|Analog modem overcurrent protection|US3624489A|1970-02-02|1971-11-30|Litton Systems Inc|Constant current variable load regulator| US3652922A|1970-11-18|1972-03-28|Bell Telephone Labor Inc|Constant current series regulator with control of bias current energizing control circuit of the regulator| GB1379223A|1971-02-01|1975-01-02|Rca Corp|Overcurrent protection circuit for a voltage regulator| GB1449607A|1972-10-03|1976-09-15|Davis Son Derby Ltd John|Electrical power supply systems| CA1032221A|1974-06-14|1978-05-30|Mitel Canada Limited|Telephone line impedance regulator| JPS5528630B2|1976-11-02|1980-07-29||| GB2160721B|1984-05-19|1987-08-19|Measurement Tech Ltd|Protection of electrical/electronic equipment| IT1215281B|1985-06-28|1990-01-31|Ates Componenti Elettron|APPARATUS AND METHOD FOR PROTECTION FROM VOLTAGE / CURRENT TRANSITORS.| US4903295A|1987-08-07|1990-02-20|Gte Products Corporation|Compact solid state station protector device| WO1990007213A1|1988-12-12|1990-06-28|Standard Telephones And Cables Pty. Limited|A protection circuit| US5179488A|1990-07-26|1993-01-12|Rosemount Inc.|Process control instrument with loop overcurrent circuit| IT1244074B|1990-10-24|1994-07-05|Sgs Thomson Microelectronics|PROTECTION DEVICE FOR ELECTRICAL AND / OR ELECTRONIC CIRCUITS OF TELEPHONES SUITABLE TO LIMIT THE POWER DISSIPATED IN THEM.| WO1992019062A1|1991-04-15|1992-10-29|Northern Telecom Limited|Current limited circuit for subscriber interface| US5237483A|1991-10-01|1993-08-17|Reliance Comm/Tec Corporation|Protector system for low voltage power feed| US5357089A|1993-02-26|1994-10-18|Harris Corporation|Circuit and method for extending the safe operating area of a BJT| NZ260129A|1993-04-08|1996-08-27|Alcatel Australia|Controlling power dissipation in telephone semiconductor line switch| US5745322A|1995-11-28|1998-04-28|Raychem Corporation|Circuit protection arrangements using ground fault interrupter for overcurrent and overvoltage protection|US6782098B1|2000-04-07|2004-08-24|Uniden Corporation|Protection circuit/method for subscriber telephone interface circuit| US7266195B1|2003-03-04|2007-09-04|Silicon Laboratories Inc.|Surge clamp protection circuit| AT500263B1|2004-03-15|2007-04-15|T I P S Messtechnik Gmbh|METHOD AND CIRCUIT FOR THE PROTECTION OF TEST CONTACTS IN HIGH-CIRCULAR MEASUREMENT OF SEMICONDUCTOR COMPONENTS| DE102005009789A1|2005-03-03|2006-09-14|Airbus Deutschland Gmbh|Electrical component e.g. heater device, overload protection arrangement for e.g. airplane, has protection device bypassing overload current in case of short circuit so that current via component to be protected is not above maximum limit| EP1701423B1|2005-03-03|2012-02-08|Airbus Operations GmbH|Arrangement for improving the short circuit withstandability of an appliance by use of a bypass| US7822195B2|2006-07-06|2010-10-26|Uniden Corporation|Telephone interface circuit| US7940922B2|2006-07-06|2011-05-10|Uniden Corporation|Telephone interface circuit| US7995744B2|2007-01-31|2011-08-09|Uniden Corporation|Telephone interface circuit| US20080285741A1|2007-05-16|2008-11-20|Uniden Corporation|Telephone interface circuit| US8411848B2|2008-11-11|2013-04-02|Uniden Corporation|Telephone interface circuit for providing over-current and over-voltage protection| CN102761111A|2011-04-28|2012-10-31|郭秀侠|Novel protection circuit control device| CN110912390A|2019-12-02|2020-03-24|上海联影医疗科技有限公司|Sparking current suppression method, circuit and control method of sparking current suppression circuit|
法律状态:
2001-01-02| AS| Assignment|Owner name: HARRIS CORPORATION, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WONG, WAYNE KWOK-WAI;RODRIGUEZ, SAUL;REEL/FRAME:011419/0450 Effective date: 19980401 | 2005-05-25| AS| Assignment|Owner name: FLUKE CORPORATION, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HARRIS CORPORATION;REEL/FRAME:016274/0166 Effective date: 20050506 | 2006-01-09| FPAY| Fee payment|Year of fee payment: 4 | 2010-01-11| FPAY| Fee payment|Year of fee payment: 8 | 2014-02-14| REMI| Maintenance fee reminder mailed| 2014-07-09| LAPS| Lapse for failure to pay maintenance fees| 2014-08-04| STCH| Information on status: patent discontinuation|Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 | 2014-08-26| FP| Expired due to failure to pay maintenance fee|Effective date: 20140709 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US5492298A| true| 1998-04-03|1998-04-03|| US09/753,097|US6418222B2|1998-04-03|2001-01-02|High current protection circuit for telephone interface|US09/753,097| US6418222B2|1998-04-03|2001-01-02|High current protection circuit for telephone interface| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|